Transcriptional profiling of the chick pineal gland, a photoreceptive circadian oscillator and pacemaker.
نویسندگان
چکیده
The avian pineal gland contains both circadian oscillators and photoreceptors to produce rhythms in biosynthesis of the hormone melatonin in vivo and in vitro. The molecular mechanisms for melatonin biosynthesis are largely understood, but the mechanisms driving the rhythm itself or the photoreceptive processes that entrain the rhythm are unknown. We have produced cDNA microarrays of pineal gland transcripts under light-dark and constant darkness conditions. Rhythmic transcripts were classified according to function, representing diverse functional groups, including phototransduction pathways, transcription/translation factors, ion channel proteins, cell signaling molecules, and immune function genes. These were also organized relative to time of day mRNA abundance in light-dark and constant darkness. The transcriptional profile of the chick pineal gland reveals a more complex form of gene regulation than one might expect from a gland whose sole apparent function is the rhythmic biosynthesis of melatonin. The mRNAs encoding melatonin biosynthesis are rhythmic as are many orthologs of mammalian "clock genes." However, the oscillation of phototransductive, immune, stress response, hormone binding, and other important processes in the transcriptome of the pineal gland, raises new questions regarding the role of the pineal gland in circadian rhythm generation, organization, and avian physiology.
منابع مشابه
Role of circadian activation of mitogen-activated protein kinase in chick pineal clock oscillation.
A circadian pacemaker generates a rhythm with a period of approximately 24 hr even in the absence of environmental time cues. Several photosensitive neuronal tissues such as the retina and pineal gland contain the autonomous circadian pacemaker together with the photic-input pathway responsible for entrainment of the pacemaker to the daily light/dark cycle. We show here that, in constant darkne...
متن کاملCircadian clock in cell culture: II. In vitro photic entrainment of melatonin oscillation from dissociated chick pineal cells.
The avian pineal gland contains circadian oscillators that regulate the rhythmic synthesis of melatonin. We have developed a flow-through cell culture system in order to begin to study the cellular and molecular basis of this vertebrate circadian oscillator. Pineal cell cultures express a circadian oscillation of melatonin release for at least 5 cycles in constant darkness with a period close t...
متن کاملCircadian clock in cell culture: I. Oscillation of melatonin release from dissociated chick pineal cells in flow-through microcarrier culture.
The avian pineal gland contains circadian oscillators that regulate the rhythmic release of melatonin. We have developed a dissociated chick pineal cell culture system in order to begin a cellular analysis of this vertebrate circadian oscillator. Dissociated pineal cells maintained in cyclic light conditions (LD 12:12) released melatonin rhythmically. The release of melatonin was elevated durin...
متن کاملRegulation of serotonin N-acetyltransferase activity in the chick pineal gland by UV-A and white light: role of MK-801- and SCH 23390-sensitive retinal signals.
The rhythmic melatonin synthesis in the pineal gland is one of the most extensively studied circadian rhythms in vertebrates. Light is the dominant environmental factor controlling this process. Light at night acutely suppresses pineal melatonin content and activity of serotonin N-acetyltransferase (AANAT; the key and penultimate enzyme in the hormone biosynthetic pathway). In addition, pulses ...
متن کاملTemperature compensation and temperature entrainment of the chick pineal cell circadian clock.
We have used an in vitro model system of the circadian clock, dispersed chick pineal cells, to examine the effects of temperature on the circadian clock of a homeotherm. This preparation enabled us to isolate a circadian clock from in vivo homeostatic temperature regulation and expose cells to both constant temperatures and abrupt temperature changes. By manipulating the temperature of the pine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular endocrinology
دوره 17 10 شماره
صفحات -
تاریخ انتشار 2003